3. Time Complixity - TapeEquilibrium
TapeEquilibrium
Link: https://app.codility.com/programmers/lessons/3-time_complexity/tape_equilibrium/
A non-empty array A consisting of N integers is given. Array A represents numbers on a tape.
Any integer P, such that 0 < P < N, splits this tape into two non-empty parts: A[0], A[1], …, A[P − 1] and A[P], A[P + 1], …, A[N − 1].
The difference between the two parts is the value of: |(A[0] + A[1] + … + A[P − 1]) − (A[P] + A[P + 1] + … + A[N − 1])|
In other words, it is the absolute difference between the sum of the first part and the sum of the second part.
For example, consider array A such that:
A[0] = 3 A[1] = 1 A[2] = 2 A[3] = 4 A[4] = 3 We can split this tape in four places:
P = 1, difference = |3 − 10| = 7.
P = 2, difference = |4 − 9| = 5.
P = 3, difference = |6 − 7| = 1.
P = 4, difference = |10 − 3| = 7
Write an efficient algorithm for the following assumptions:
N is an integer within the range [2..100,000]; each element of array A is an integer within the range [−1,000..1,000].
Tried
|
|
다 맞췄지만 성능면에서 다 틀려서 53%만 맞췄다..
시간 복잡도는 O(N * N)이다.
|
|
하나씩 반영해나가는 게 O(N)이 되고,
100%로 맞췄음을 알 수 있다.